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Approximate solutions of two-way diffusion equations
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In this paper, a general and systematic scheme is formulated for finding approximate solutions of two-way
diffusion equations. This expansion scheme is valid for arbitrary mean-free path and can be carried out to any
desired accuracy. Its potential is demonstrated by constructing approximate solutions for two problems con-
cerning the kinetics of an electron beam, and the accuracy is found to be very good even when only a few
terms are included in the expansion. The approximate solutions found are compared with numerical calcula-
tions and previous analytical work in the literature.
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I. INTRODUCTION

Kinetic equations for gases and plasmas are notorio
difficult to solve in general. Analytical techniques are rare
applicable unless the collisional mean-free path is m
shorter or much longer than the scale length of the syst
Instead, one often resorts to Monte Carlo simulations to
termine transport properties of gases and plasmas in the
termediate mean-free-path regime. In this paper, we pre
an alternative, analytical method for finding approximate
lutions to kinetic problems that are of the form of two-wa
diffusion equations@1#. Such equations often occur in kinet
plasma theory, where the long range of Coulomb interac
implies diffusive spreading of the distribution function
velocity space. The kinetic equation, therefore, resemble
diffusion equation, but one where the direction of ‘‘time’’
different in different parts of velocity space, i.e., a two-w
diffusion equation.

Our analytical approximation scheme relies on an exp
sion in certain eigenfunctions. As explained in Refs.@1,2#,
the eigenfunctions for two-way diffusion equations are
somewhat unconventional nature~Sturm-Liouville theory is
not applicable!, and this is what makes the solution difficu
Section II contains a general discussion of two-way diffus
equations followed by a description of the expansion te
nique. This scheme is then applied to two different proble
concerning the kinetics of electron beams in Sec. III and S
IV. The first of these problems is that of electron transpor
a scattering medium, with applications to, e.g., elect
transport in plasmas and deposition of pencil beams in ra
therapy@3,4#. The second problem is one that recently s
faced in the theory of damping of relativistic electron bea
by the emission of synchrotron radiation, which has appli
tions to runaway electron currents in tokamaks@5#. In both
these problems, it is found that good accuracy is obtained
including only a few terms in the expansion. Our conclusio
are summarized in Sec. V.

II. EXPANSION PROCEDURE

Following the work by Fisch and Kruskal@1#, we consider
the general two-way diffusion equation in one dimension
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h~m!
] f ~x,m!

]x
5

]

]m
D~m!

] f ~x,m!

]m
5L~ f !. ~1!

We assume thatD(m) is positive in the intervala<m<b but
allow h(m) to change sign at least once. This means t
diffusive spreading inm takes place with increasingx in the
region whereh is positive, and with decreasingx whereh is
negative. In other words, the arrow of ‘‘time’’ is in opposit
directions in different regions. The domain under consid
ation is a<m<b and 0<x<L, and the problem is well-
posed when boundary conditions are prescribed on the e
boundariesm5a andm5b, but only on parts of the bound
ariesx50 andx5L. At x50, ‘‘initial’’ conditions should be
specified whereh is positive, and atx5L ‘‘final’’ conditions
should be given whereh is negative,

f ~0,m!5 f 1~m!, h~m!.0,

f ~L,m!5 f 2~m!, h~m!,0.

If x denotes a space coordinate, this corresponds to spe
ing the distribution of the particles that enter the mediu
while the equation itself determines the distribution of em
ted particles.

If a conventional separation of variables is attempted, o
obtains the eigenvalue problem

L~ f n!52lnh~m! f n~m!, ~2!

where the integern takes values2`,n,`. It is clear that

f ~x,m!5 f n~m!e2lnx, ~3!

is a solution to Eq.~1! if the boundary conditions are ig
nored. In a conventional Sturm-Liouville problem, the so
tion could then be expressed as a linear combination of s
eigensolutions. For, when typical boundary value proble
are solved by separating variables, Sturm-Liouville theo
guarantees that the eigenfunctions form a complete and
thogonal system. However, sinceh changes sign in the inter
val of interest (a,m,b) conventional Sturm-Liouville
theory does not apply, and the eigenfunctions do not ne
sarily form a complete system. Nevertheless, the system
©2002 The American Physical Society02-1
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comes complete if it is supplemented by an additional fu
tion, g(m), that satisfies the equation

]

]m
D~m!

]g~m!

]m
1h~m!50, ~4!

if such a function exists.~Otherwise the eigenfunctionsf n
form a complete system by themselves.! This corresponds to
the nonseparable solution~the so-called diffusion solution!
f D(x,m)5x2g(m). In fact, the eigenfunctionsf n(m) with
positive eigenvalues together withg(m) form a complete se
on the interval whereh(m).0. These results were conjec
tured by Fisch and Kruskal@1# and proved by Beals@6#
slightly later. This implies that the boundary data atx50 can
be expanded as

f 1~m!5ag~m!1 (
n>0

`

cnf n~m!. ~5!

This appears natural since the solutions~3! decay with in-
creasingx. Far from the boundary, one expects the solut
to be independent of the details in the boundary condit
f 1(m). However, unlike the conventional Sturm-Liouvill
case, the eigenfunctions are not orthogonal and the ex
sion coefficients are, therefore, not easily calculated. Si
larly, the eigenfunctions with negative eigenvalues form
complete but nonorthogonal set on the interval whereh(m)
,0, and constitute a natural set of basis functions in wh
to expand the data on the other boundary,f 2(m). The gen-
eral solution to Eq.~1! can thus be expanded as follows:

f ~x,m!5c0f 0~m!1a f D~x,m!1 (
n.0

~cnf n~m!e2lnx

1c2nf 2n~m!e2l2n(x2L)!. ~6!

These results suggest that we can construct approximat
lutions to the two-way diffusion problem in a natural an
systematic way. IfL is not too small, one expects that th
solution f (x,m) can be represented with reasonable accur
by the first few eigensolutions in most of the domain. T
higher-order eigenfunctions have large eigenvalues and
strongly suppressed inside the region. These terms sh
contribute to the solution only in narrow boundary laye
close to the boundaries.

The simplest approximation off (x,m) was determined in
a classic paper by Betheet al. @7#, and consists in neglectin
all the exponentially damped terms in Eq.~6!,

f ~x,m!.c0f 0~m!1a f D~x,m!5c01a„x2g~m!…. ~7!

The problem investigated in Ref.@7# is that of scattering of
monoenergetic electrons, which we discuss in detail in
next section. In this problem,h(m)5g(m)5m, D(m)5(1
2m2)/2, a521, b51, and the coefficientsc0 anda were
determined by the physical constraint that the approxim
solution should describe the correct flux of electrons ente
the scattering medium,
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E
h(m).0

f ~0,m!mdm5E
h(m).0

f 1~m!mdm, ~8!

E
h(m),0

f ~L,m!mdm5E
h(m),0

f 2~m!mdm. ~9!

In the case of a collimated electron beam with perpendicu
incidence, the boundary conditions become

f 1~m!5d~m21!, ~10!

f 2~m!50,

and we obtaina526/(413L) andc52(11a/3). The total
transmitted flux is then given by@7#

G5E
21

1

f ~x,m!mdm52a
2

3
5

1

113L/4
. ~11!

Given Eq.~6!, it is now clear how to improve this zerot
approximation Eq.~7!. We include the first eigenfunction an
write

f ~x,m!.c0f 0~m!1a f D~x,m!1c1f 1~m!e2l1x

1c21f 21~m!e2l21(x2L). ~12!

Generalizing the procedure of Betheet al. we determine the
coefficients by forming an equation system consisting
Eqs.~8! and ~9!, written in the more general form

E
h(m).0

f ~0,m!h~m!dm5E
h(m).0

f 1~m!h~m!dm, ~13!

E
h(m),0

f ~L,m!h~m!dm5E
h(m),0

f 2~m!h~m!dm,

~14!

and two further equations involving the next order mome
of f, viz.,

E
h(m).0

f ~0,m! f 1~m!dm5E
h(m).0

f 1~m! f 1~m!dm,

~15!

E
h(m),0

f ~L,m! f 21~m!dm5E
h(m),0

f 2~m! f 21~m!dm.

~16!

It is clear that arbitrary accuracy can be obtained by c
tinuing this procedure of adding eigenfunctions to the exp
sion of f. A consistent scheme for determining the expans
coefficients can now be given by forming an infinite set
suitably chosen weighted averages of the boundary co
tions, viz.,

E
h(m).0

f ~0,m!wn
1dm5E

h(m).0
f 1~m!wn

1dm, ~17!
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E
h(m),0

f ~L,m!wn
2dm5E

h(m),0
f 2~m!wn

2dm,

where the weighting functions arew0
15w0

25h(m) andwn
6

5 f 6n(m). When the system is truncated atn5N we obtain
a system of 212N equations for 212N unknown coeffi-
cients (a,c0 ,c6n). This method is quite general, and w
demonstrate its potential by considering two particular tw
way diffusion problems. The first one is the scattering pro
lem of Betheet al., and the other one concerns the radiat
damping of a relativistic electron beam.

III. EXAMPLE 1: KINETICS OF ELECTRON SCATTERING

Small-angle elastic scattering of particles impinging up
large, stationary scatterers in a slab of lengthL is described
by the following kinetic equation@7#:

m
] f

]x
5

1

2

]

]m
~12m2!

] f

]m
[L~ f !, ~18!

where f 5 f (x,m) is the azimuthally integrated steady sta
distribution function,x is the distance of propagation~nor-
malized to the scattering length!, andm is the cosine of the
pitch angle. Unfortunately, the eigenfunctions found from
eigenvalue problem~2!,

d

dm
~12m2!

d fn

dm
12lnm f n50, ~19!

cannot be expressed in elementary functions, but are e
obtained numerically, see Fig. 1. The eigenfunctions are
ther even nor odd inm since the scattering operatorL does
not change the parity but multiplication bym does. For in-
stance, iff is even thenL( f ) is even whilem f is odd. We
also note that there are both positive and negative eigen
ues. Furthermore, iff n(m) is the eigenfunction correspond
ing to an eigenvalueln , then f n(2m) is the eigenfunction
corresponding to the eigenvalue2ln . In particular, f 0(m)
51 is an eigenfunction with the eigenvaluel050.

Even though an exact closed form of the eigenfunctio
cannot be given, they can be calculated approximately.
way to do this is by constructing a variational form for th
eigenvalue problem and using trial functions to approxim

FIG. 1. The numerically calculated eigenfunctions,f n .
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the eigenfunctions@8#. Another and perhaps more systema
way is to expand the eigenfunctions in Legendre polyno
als, f n5( l 50

` al Pl , as is natural when the diffusion operat
is of the form~18!. Multiplying Eq. ~2! by Pk(m) and inte-
grating overm gives

E
21

1

PkL~ f n!dm52lnE
21

1

mPkf ndm, ~20!

and by using the orthogonality relation and the fact th
L(Pl)52( lal l ( l 11)Pl /2, this becomes a recurrence equ
tion for the unknown expansion coefficientsak ,

k~k11!

2k11
ak5ln(

l 50

`

alE
21

1

mPkPldm. ~21!

Truncating the Legendre polynomial expansion at theNth
term in Eq.~21! leads to a system ofN11 equations, and in
order to find nontrivial solutions its coefficient matrix dete
minant must vanish. This is an equation of even order, and
solutions are the eigenvaluesln . As mentioned previously, if
ln is an eigenvalue so is2ln , and the roots of the determi
nant equation, therefore, come in pairs6ln . The conver-
gence of the eigenvalues with increasingN is shown in Fig.
2. It is seen from this figure that truncating atN55 gives
sufficient accuracy for the first eigenfunction,f 1, which then
becomes

f 1~m!.111.663m10.199m221.868m322.612m4

21.266m5. ~22!

Comparing this result to that obtained numerically sho
that there is no visible difference between the two, Fig. 3

The coefficients in the first-order expansion off (x,m),

f ~x,m!.c0~L ! f 01a~L ! f D~x,m!1c1~L ! f 1~m!e2l1x

1c21~L ! f 21~m!e2l21(x2L), ~23!

can now be calculated by solving the system of equati
~17!. The accuracy of this expansion will of course depe
on the imposed boundary conditions, and we do not exp
this first-order expansion to accurately describe the distri

FIG. 2. Convergence ofln as a function of the truncation num
ber N.
2-3
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tion function close to the slab surfaces, particularly not wh
a rapidly varying boundary condition, such as the delta fu
tion ~10!, is used. However, away from the boundary laye
in the bulk of the slab, where the behavior off is dominated
by the diffusion solutionf D , the contributions from the
eigenfunctions are small corrections, and here we do ex
improvements compared with the zeroth-order express
~7!. In order to study these improvements, we examine
particle flux using the same boundary conditions as bef
Eq. ~10!. It is evident that only the diffusion solutionf D

should contribute to the flux integralG5*21
1 f (x,m)mdm,

since all the higher-order eigenfunctions have vanishing fl
This follows directly from an integration of Eq.~19! over the
interval @21,1#. Thusa(L) determines the flux, and we ob
tain

G52
2

3
a~L !

52
2

3

22.64710.520e2l1L10.206e22l1L

1.4391L20.085e2l1L2~0.07310.039L !e22l1L

'
1.774

1.4391L
, ~24!

where the last, approximate, equality is obtained by negl
ing the exponentials, which is justified ifl1L@1.

Approximate expressions for higher-order eigenfunctio
( f 2 , f 3 . . . ) can becalculated in the same manner as abo
The flux found by includingf 2 in the expansion off is prac-
tically exact, see Fig. 4. If a smoother boundary condition
used instead of the delta function, low-order truncations
the expansion forf are even more accurate. Indeed we fi
that the first-order truncation generally gives a flux with e
tremely small error, even for very smallL.

IV. EXAMPLE 2: DYNAMICS OF RUNAWAY ELECTRONS

Our second problem concerns the kinetics of a relativi
electron beam immersed in a magnetized plasma. This p
lem is of interest for the theory of ‘‘runaway electrons’’ i
disrupting tokamak discharges, where fast electrons

FIG. 3. Comparison between the numerically calculatedf 1 and
its Legendre polynomial approximation~top!. The difference be-
tween the two,D5 f 1( legendre)2 f 1(num) ~bottom!.
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their energy by two mechanisms: by colliding with bac
ground plasma particles, and by emitting synchrotron rad
tion. These two mechanisms are intimately coupled since
emitted power depends on the magnitude and direction of
velocity vector, which continually change because of co
sions. The reader is referred to Ref.@5# for a more complete
discussion of the relevant physics. Here, we deal with
mathematics of the two-way diffusion problem that aris
from the kinetic equation more fully than was done in th
paper.

In a plasma immersed in a magnetic fieldB, the kinetic
equation for a beamlike (p'!pi) distribution of strongly
relativistic electrons experiencing an electric field, Coulom
collisions, and synchrotron radiation reaction is@5#

t
] f

]t
1FE212

t

t r
S p'

2 1
r0

2

R2
pi

4D G ] f

]pi

5
11Z

2p'

]

]p'
S p'

] f

]p'
D . ~25!

Here p5gv/c is the normalized electron momentum,t
54pe0

2me
2c3/nee

4ln L the collision time for relativistic elec-
trons,t r56pe0(mec)3/e4B2 the synchrotron radiation time
scale,E52Eiet/mec the parallel component of the norma
ized electric field,r05cme /eB, ne the plasma electron den
sity, me the electron mass, andB the magnetic field strength
The term proportional toE in Eq. ~25! thus represents the
acceleration caused by the electric field, while the next te
(21) describes friction due to collisions with thermal ele
trons. The terms involvingt r represents the reaction forc
along the magnetic field acting on the electrons as they e
synchrotron radiation. The first one of these terms~propor-
tional to p'

2 ) is the contribution from gyromotion, and th
second term that from parallel motion along the magne
field, whose radius of curvature is taken to beR. The right-
hand side of the equation describes scattering of the velo
vector caused by collisions with background electrons a
ions of chargeZ.

The steady-state distribution in the limit of straight ma
netic field (R→`) is thus described by the following two
way diffusion equation:

FIG. 4. Transmission flux as a function of slab lengthL ~nor-
malized to the scattering length!. f num is the numerically calculated
flux, f Bethe is the expression found by Betheet al. @Eq. ~11!#, f 1 and
f 2 are the fluxes found when using the first order, Eq.~23!, and
second-order approximation off in calculatinga, respectively.
2-4
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~12x22y2!
] f

]z
5

]2f

]x2
1

]2f

]y2
, ~26!

where we have introduced normalized variables by writin

p'
2 5

E21

t/t r
~x21y2!,

pi5
2t r~E21!2z

~11Z!t
.

The domain where this equation is to be solved is 0,z,`,
and the boundary conditions are

f ~x,y,z!→0, x21y21z2→`,

f ~x,y,0!5 f 1~x,y!5d~x!d~y!, x21y2,1. ~27!

Note that boundary conditions can only be specified on
part of thez50 boundary whereh(x,y)512x22y2.0 be-
cause of the two-way nature of the equation. Physically,
choice of a delta function condition on this boundary rep
sents the generation of a runaway electron beam by the e
tric field if E.1 @9#. As these electrons are accelerated, th
experience scattering, that increases their perpendicular
mentum. Forx21y2.1, this leads to such large emission
synchrotron radiation that the electrons are slowed down
brought back toward the low-energy boundaryz50, which
they cross with an unknown distribution atx21y2.1.

Although Eq.~26! is formally a two-way diffusion equa
tion in two dimensions, our rotationally symmetric bounda
condition makes the problem effectively one-dimension
and the theory from Sec. II applies. A more fundamen
difference between this problem and that considered in
previous sections is that there is no diffusion solution of E
~26! satisfying the boundary conditions since there is now
solution of Eq.~4! that vanishes at infinity. The solution o
Eq. ~26! can, therefore, be represented purely by a lin
combination of eigenfunctions

]2f kl

]x2
1

]2f kl

]y2
52gkl~12x22y2! f kl .

In contrast to Sec. III, these functions can be expressed
lytically @5#,

f kl~x,y!5expS 2
Agkl

2
~x21y2! DHk~xgkl

1/4!Hl~ygkl
1/4!,

~28!

in terms of Hermite polynomialsHk , and the eigenvalues ar

gkl54~k1 l 11!2, k,l 50,1, . . . . ~29!

Alternatively, Eq.~26! can also be separated in cylindric
coordinates. This leads to an eigenvalue problem equiva
to the two-dimensional harmonic oscillator in quantum m
chanics, which can be solved in terms of Laguerre poly
mials @10#. The distribution function expansion~6! becomes
03650
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f ~x,y,z!5 (
k,l 50

`

ckl f kl~x,y!exp~2gklz!, ~30!

and we observe that for largez the dominant behavior off is
found from the eigenfunction with the lowest eigenval
since the terms decay exponentially,}exp(2gklz). The ex-
pansion coefficients,ckl , are determined by solving the sys
tem of equations~17!,

E
h(x,y).0

f ~x,y,0!wkl
1dx dy5E

h(x,y).0
f 1~x,y!wkl

1dx dy,

~31!

with weighting functionswkl
15 f kl . h(m) has been excluded

from the weighting functions since there is no diffusion s
lution to this problem. Since the boundary conditio
f 1(x,y)5d(x)d(y) at z50 is even inx and y, the coeffi-
cientsckl vanish when either index is odd. The nonzero c
efficients decrease rapidly with increasing indices. By n
merically solving Eq. ~31!, we find that c00 converges
towards 1.19 and the lowest-order approximation off valid
for z@1/g0251/36 thus becomes

f ~x,y,z!'c00 f 00~x,y!exp~2g00z!

51.19 exp@2~x21y2!24z#. ~32!

When considering smallerz, higher-order approximations ar
needed to describef accurately. The coefficients in the ne
four approximations are calculated numerically and found
be

c025c20520.97,

c045c4050.198,c2252c04,

c065c60520.0232,c245c4253c06,

c085c8050.0019,c265c6254c08,c4456c08.

Including these terms gives an accurate description off ev-
erywhere except at very smallz. In this region,z→0, the
boundary condition~27! says nothing about the distributio
function forx21y2.1, but dictates that it should be strong
peaked aroundx5y50 for x21y2,1. In fact, for r 25x2

1y2!1, our Eq.~26! reduces to an ordinary diffusion equa
tion, with the solution

f ~r ,z!5
1

4pz
expS 2

r 2

4zD . ~33!

Figures 5 and 6 show the truncated series solution~30! at
z50.015 andz50.06, together with the asymptotic expre
sions ~32! and ~33!. For small r the solution closely re-
sembles Eq.~33!, and for larger and largez it approaches
Eq. ~32!. The two-way diffusion nature of the equation
also evident in Fig. 5: there is a population of backscatte
electrons in the regionr;1.2.
2-5
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V. SUMMARY

It is known from the mathematical literature that two-w
diffusion equations have the property that boundary con
tions can only be prescribed on ‘‘half’’ the boundaries, a
that ‘‘half’’ of the eigenfunctions form a complete but non
orthogonal set on these ‘‘half’’ boundaries. In the pres
paper, we have shown how these properties can be use
construct approximate solutions to these equations in a

FIG. 5. Distribution functionf vs r 5(x21y2)1/2 at z50.015:~a!
one-way diffusion solution~33!; ~b! series solution~30! truncated
after terms withk1 l 58; and~c! zeroth-order approximation, Eq
~32!.
ci
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tematic way. The power of the method is demonstrated
examining two particular two-way diffusion problems: sca
tering of electrons by stationary particles in a slab; a
damping of a relativistic electron beam by the combined
tion of scattering and synchrotron radiation emission. T
expansion converges quickly in both these problems, eve
the mean-free path is not very short, and it, therefore,
pears that the method should be of wide applicability.
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FIG. 6. Same as Fig. 5 but forz50.06.
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