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Approximate solutions of two-way diffusion equations
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In this paper, a general and systematic scheme is formulated for finding approximate solutions of two-way
diffusion equations. This expansion scheme is valid for arbitrary mean-free path and can be carried out to any
desired accuracy. Its potential is demonstrated by constructing approximate solutions for two problems con-
cerning the kinetics of an electron beam, and the accuracy is found to be very good even when only a few
terms are included in the expansion. The approximate solutions found are compared with numerical calcula-
tions and previous analytical work in the literature.
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Kinetic equations for gases and plasmas are notoriously
difficult to solve in general. Analytical techniques are rarerWe assume thdd () is positive in the intervah< u<b but
applicable unless the collisional mean-free path is muc ) .
shorter or much longer than the scale length of the systerr%”ow h(u) to change sign at least once. This means that

Instead, one often resorts to Monte Carlo simulations to deg|ffu5|ve spreading inu takes place with increasingin the

termine transport properties of gases and plasmas in the if€910N wheren is positive, and with decreasingwhereh is.
termediate mean-free-path regime. In this paper, we presefgdative. In other words, the arrow of “time” is in opposite
an alternative, analytical method for finding approximate sodirections in different regions. The domain under consider-
lutions to kinetic problems that are of the form of two-way ation isa<u=<b and O<x=<L, and the problem is well-
diffusion equation$1]. Such equations often occur in kinetic Posed when boundary conditions are prescribed on the entire
plasma theory, where the long range of Coulomb interactiofoundariesu=a and . =b, but only on parts of the bound-
implies diffusive spreading of the distribution function in ariesx=0 andx=L. At x=0, “initial” conditions should be
velocity space. The kinetic equation, therefore, resembles specified wheré is positive, and ak=L “final” conditions
diffusion equation, but one where the direction of “time” is should be given wherh is negative,

different in different parts of velocity space, i.e., a two-way

diffusion equation. f(Ou)=Ff, (), h(u)>0,
Our analytical approximation scheme relies on an expan-
sion in certain eigenfunctions. As explained in Refs2], f(L,w)=Ff_(m), h(u)<O.

the eigenfunctions for two-way diffusion equations are of
somewhat unconventional natugturm-Liouville theory is |t x denotes a space coordinate, this corresponds to specify-
not applicablg and this is what makes the solution difficult. ing the distribution of the particles that enter the medium,

Section Il contains a general discussion of two-way diffusion, hije the equation itself determines the distribution of emit-
equations followed by a description of the expansion techfed particles

nique. T.h|s sche_me 1S then applied to two .d|fferent problems If a conventional separation of variables is attempted, one
concerning the kinetics of electron beams in Sec. Il and Secobtains the eigenvalue problem
IV. The first of these problems is that of electron transport in 9 P

a scattering medium, with applications to, e.g., electron _

transport in plasmas and deposition of pencil beams in radio- L(fn)=—Nah(w)fn(p), 2
therapy[3,4]. The second problem is one that recently sur- . .

faced in the theory of damping of relativistic electron beamsWhere the integen takes values-c<n<c. Itis clear that
by the emission of synchrotron radiation, which has applica- _ X

tions to runaway electron currents in tokamak$ In both fOx, ) ="Fa(pm)e %, (€)
these problems, it is found that good accuracy is obtained b
including only a few terms in the expansion. Our conclusion
are summarized in Sec. V.

% a solution to Eq(1) if the boundary conditions are ig-
“hored. In a conventional Sturm-Liouville problem, the solu-
tion could then be expressed as a linear combination of such
eigensolutions. For, when typical boundary value problems
are solved by separating variables, Sturm-Liouville theory
Following the work by Fisch and Kruskpl], we consider guarantees that the eigenfunctions form a complete and or-
the general two-way diffusion equation in one dimension, thogonal system. However, sinbechanges sign in the inter-
val of interest A<u<b) conventional Sturm-Liouville
theory does not apply, and the eigenfunctions do not neces-
*Email address: fredrik.andersson@elmagn.chalmers.se sarily form a complete system. Nevertheless, the system be-

II. EXPANSION PROCEDURE
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comes complete if it is supplemented by an additional func-
tion, g(u), that satisfies the equation f f(O-M)MdMZJ fo(pw)pudu, (8
h(u)>0 h(u)>0
d ag(u)
—D(n) +h(u)=0, 4

I p f f(L,M)Md;Ff f(n)pdu. €)
h(un)<0 h(r)<0

if such a function exists(Otherwise the eigenfunctiorf,

form a complete system by themselyeRhis corresponds to

the nonseparable solutidthe so-called diffusion solution

In the case of a collimated electron beam with perpendicular
incidence, the boundary conditions become

fD(>_<,_,u)=_x—g(,u). In fact, the _eigenfunctionﬁn(,u) with fo(pw)=08u—1), (10)
positive eigenvalues together wigff ) form a complete set
on the interval wherdn(x)>0. These results were conjec- f (u)=0

tured by Fisch and Kruskdll] and proved by Beal$6]
slightly later. This implies that the boundary dataatO can  and we obtaime= — 6/(4+ 3L) andc=2(1+ «/3). The total

be expanded as transmitted flux is then given biy’]
- % = J " dp=—aim— 11
() =ag(w)+ X cyfaln). ®) =) fmpdu=—az=ggrg @Y
This appears natural since the solutid8s decay with in- Given Eq.(6), it is now clear how to improve this zeroth

creasingx. Far from the boundary, one expects the solution@pproximation Eq(7). We include the first eigenfunction and
to be independent of the details in the boundary conditioryrite

f,.(u). However, unlike the conventional Sturm-Liouville

case, the eigenfunctions are not orthogonal and the expan- T (X.s)=Cofo(ut)+ afp(x,u)+cify(p)e

sion coeffic_ients are, there_fore, not_easil_y calculated. Simi- +e g f y(u)e 1), (12)
larly, the eigenfunctions with negative eigenvalues form a

complete but nonorthogonal set on the interval whefe)  Generalizing the procedure of Betbeal. we determine the

<0, and constitute a natural set of basis functions in whichgefficients by forming an equation system consisting of
to expand the data on the other bounddiry( ). The gen- Egs.(8) and(9), written in the more general form
eral solution to Eq(1) can thus be expanded as follows:

N f f(O,M)h(M)dM=f fo(wh(p)du, (13)
f(X,M)=Cofo(M)+afD(X,M)anZO(Cnfn(,u)e ”X h(u)>0 h(w)=0

oot (e Moy, ®) fh() Of(L,Mh(mdM:fh() T
y < n)<

These results suggest that we can construct approximate so- (14
lutions to the two-way diffusion problem in a natural and
systematic way. IfL is not too small, one expects that the
solutionf(x, ) can be represented with reasonable accurac
by the first few eigensolutions in most of the domain. The
higher-order eigenfunctions have large eigenvalues and are f f(O,M)fl(M)dM:f fo(w)f(w)du,
strongly suppressed inside the region. These terms should Jh(x)>0 h(x)>0
contribute to the solution only in narrow boundary layers (15
close to the boundaries.

The simplest approximation df{x, ) was determined in _
a classic paper by Bethet al.[7], and consists in neglecting jh(ﬂ)«)f(l"’u)fl('u)d’u fh(ﬂ)<of(’u)f1('u)dﬂ'
all the exponentially damped terms in E§), (16)

and two further equations involving the next order moments
9f f, viz.,

f(x,u)=Cofo( )+ afp(X,u)=Co+ a(x—g(u)). (7) It is clear that arbitrary accuracy can be obtained by con-
tinuing this procedure of adding eigenfunctions to the expan-

The problem investigated in Ref7] is that of scattering of Sion off. A consistent scheme for determining the expansion
monoenergetic electrons, which we discuss in detail in th&0€fficients can now be given by forming an infinite set of
next section. In this problemy(u)=g(x) =, D(r)=(1 suitably chosen weighted averages of the boundary condi-
—u?)/2, a=—1, b=1, and the coefficients, anda were  tONs, viz.,
determined by the physical constraint that the approximate
solution shpuld des_crlbe the correct flux of electrons entering f f(oaM)WerM: f f+(M)W:dM, (17)
the scattering medium, h(x)>0 h(w)>
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FIG. 1. The numerically calculated eigenfunctiofig, . .
y 9 ® FIG. 2. Convergence of,, as a function of the truncation num-

ber N.
fh(#)<of(L’M)W” du= fh(#)@f(,u)wn dus, the eigenfunctiong8]. Another and perhaps more systematic
way is to expand the eigenfunctions in Legendre polynomi-
where the weighting functions amrey =w, =h(ux) andw,  als,f,=3",a P, as is natural when the diffusion operator
=f.n(n). When the system is truncatedrae N we obtain  is of the form(18). Multiplying Eqg. (2) by P,(x) and inte-

a system of 2-2N equations for 2-2N unknown coeffi- grating overu gives
cients (,cq,C.,). This method is quite general, and we

demonstrate its potential by considering two particular two- f ! _ f 1
way diffusion problems. The first one is the scattering prob- ,lpkﬁ(f”)d’“_ An ,1'“P"f”d’“’ (20)
lem of Betheet al,, and the other one concerns the radiative
damping of a relativistic electron beam. and by using the orthogonality relation and the fact that
L(P)=-2al(l+1)P,/2, this becomes a recurrence equa-
IIl. EXAMPLE 1: KINETICS OF ELECTRON SCATTERING tion for the unknown expansion coefficiersg,
Small-angle elastic scattering of particles impinging upon k(k+1) “ 1
large, stationary scatterers in a slab of lengtis described maﬁknz a | wuPPdu. (21
by the following kinetic equatiof7]: =0 -1
o 14 of Truncating the Legendre polynomial expansion at ita
p—==—(1—pu?)—=L(~f), (18  termin Eq.(21) leads to a system dfi+1 equations, and in
Ix 2 dp I order to find nontrivial solutions its coefficient matrix deter-

minant must vanish. This is an equation of even order, and its

wheref=1(x,u) is the azimuthally integrated steady state ;. iong are the eigenvaluks. As mentioned previously, if

distribution function,x is the distance of propagatidmor- X, is an eigenvalue so is \,,, and the roots of the determi-

malized to the scattering lengthand . is the cosine of the nant equation, therefore, come in paits\,. The conver-

E:tgcgn?lgﬁjlg';ggg%g?tely’ the eigenfunctions found from thegence of the eigenvalues with increasiNds shown in Fig.

2. It is seen from this figure that truncating &5 gives
d df sufficient accuracy for the first eigenfunctidn, which then
a1, F2xnth=0, (19  becomes

. _  fy(u)=1+1.663u+0.199>—1.868u%—2.612u*
cannot be expressed in elementary functions, but are easily

obtained numerically, see Fig. 1. The eigenfunctions are nei- —1.266u°. (22)
ther even nor odd inw since the scattering operatgrdoes i ) . .

not change the parity but multiplication by does. For in- Comparlng_ this r_efsult t(_) that obtained numerically _shows
stance, iff is even thenZ(f) is even whilenf is odd. We that there |s.n.o VISIp|e dlﬁgrence between t_he two, Fig. 3.
also note that there are both positive and negative eigenval- 1he coefficients in the first-order expansionfgk, w),

ues. Furthermore, if (1) is the eigenfunction correspond- _ Chex

ing to an eigenvalua ,, thenf,(—u) is the eigenfunction fx, ) =Co(L)fota(L)Tp(x, ) +Co(L) Ty (m)e™"
corresponding to the eigenvalue\,,. In particular, fo(u) +e_y(L)f_q(u)e P17, (23

=1 is an eigenfunction with the eigenvalig=0.

Even though an exact closed form of the eigenfunctioncan now be calculated by solving the system of equations
cannot be given, they can be calculated approximately. On€l7). The accuracy of this expansion will of course depend
way to do this is by constructing a variational form for the on the imposed boundary conditions, and we do not expect
eigenvalue problem and using trial functions to approximatehis first-order expansion to accurately describe the distribu-
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" malized to the scattering lengtt ., is the numerically calculated

FIG. 3. Comparison between the numerically calculdtednd  fluX, fgeneis the expression found by Betee al.[Eq.(11)], f, and

its Legendre polynomial approximatiofiop). The difference be- f2 are the fluxes found when using the first order, E2B), and
tween the twoA = f,(legendrd— f,(nun) (botton). second-order approximation bin calculatinga, respectively.

tion function close to the slab surfaces, particularly not wherfn€ir energy by two mechanisms: by colliding with back-
a rapidly varying boundary condition, such as the delta funcground plasma particles, and by emitting synchrotron radia-
tion (10), is used. However, away from the boundary Iayers,t'or!- These two mechanisms are |nt|r_nately coupled since the
in the bulk of the slab, where the behaviorfdé dominated ~€mitted power depends on the magnitude and direction of the
by the diffusion solutionf,, the contributions from the vglocny vector, whlch continually change because of colli-
eigenfunctions are small corrections, and here we do expe&{ons- The reader is referred to RE5] for a more complete
improvements compared with the zeroth-order expressiofiscussion of the relevant physics. Here, we deal with the
(7). In order to study these improvements, we examine thénathematics of the two-way diffusion problem that arises
particle flux using the same boundary conditions as befordfom the kinetic equation more fully than was done in that
Eq. (10). It is evident that only the diffusion solutioh,  PapPer.

should contribute to the flux integrdl= [ ,f(x, ) udu, In a plasma immersed in a magnetic fi@d the kinetic

since all the higher-order eigenfunctions have vanishing flux€duation for a beamlikep( <py) distribution of strongly

This follows directly from an integration of E4L9) over the relativistic electrons experiencing an electric field, Coulomb
interval[ —1,1]. Thusa(L) determines the flux, and we ob- collisions, and synchrotron radiation reactiorj 5§
tain

2
J T Po of
T—+|E-1-—|pi+=p]| |
2 ol
3
_ 1+Z 9 of o5
_ 2 —2.647+0.52 Mt +0.206 Mt ~2p, ap, \Prap, ) @9
_ —NL__ —2NqL
31439+ -0.08% ™"—(0.073+0.03% )¢ Mt Here p=yv/c is the normalized electron momentum,
1.774 =47eim2c®/n.e’in A the collision time for relativistic elec-
~ 1439 L (24)  trons, ,=6mey(mec)®/e*B? the synchrotron radiation time

scale E= —E er/mcC the parallel component of the normal-

where the last, approximate, equality is obtained by neglectZed electric fieldpo=cmc/eB, n. the plasma electron den-
ing the exponentials, which is justified if;L>1. sity, m, the electron mass, ar@lthe magnetic field strength.

Approximate expressions for higher-order eigenfunctions! Ne term proportional t@& in Eq. (25 thus represents the
(f,,f5...) can becalculated in the same manner as above_acceleratlon_ causgd_by the electnq f!eld, w_hlle the next term
The flux found by including , in the expansion of is prac- (—1) describes fI’!CtIOI’] .due to collisions with the(mal elec-
tically exact, see Fig. 4. If a smoother boundary condition isfons. The terms involving;, represents the reaction force
used instead of the delta function, low-order truncations oflong the magnetic field acting on the electrons as they emit
the expansion fof are even more accurate. Indeed we find?ynChrOtrOZ” radiation. The first one of these teripeopor-
that the first-order truncation generally gives a flux with ex-tional to p7) is the contribution from gyromotion, and the
tremely small error, even for very small second term that from parallel motion along the magnetic
field, whose radius of curvature is taken to ReThe right-
hand side of the equation describes scattering of the velocity
vector caused by collisions with background electrons and

Our second problem concerns the kinetics of a relativistidons of chargeZ.
electron beam immersed in a magnetized plasma. This prob- The steady-state distribution in the limit of straight mag-
lem is of interest for the theory of “runaway electrons” in netic field (R— ) is thus described by the following two-
disrupting tokamak discharges, where fast electrons losway diffusion equation:

IV. EXAMPLE 2: DYNAMICS OF RUNAWAY ELECTRONS
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, . 0f P*f 9% ”
(I=X=y)—=—+—, (26) f(xY,2)= > cufi(xy)exp — ya2), (30
0z (9X2 ayz k,I=0

where we have introduced normalized variables by writing and we observe that for largehe dominant behavior dfis
found from the eigenfunction with the lowest eigenvalue
since the terms decay exponentiallyexp(—yq2). The ex-
pansion coefficients;,,, are determined by solving the sys-
tem of equationg17),

E-1
pi= - (x2+y?),

7/

27 (E—1)%z
PI=—q5r=z-
(1+2)7 j f(x,y,0)w,,dx dy= fL Oy widx dy,
i i i . . h(x,y)>0 h(x,y)>0
The domain where this equation is to be solved 4s23<«, (31

and the boundary conditions are

with weighting functionswy,=f,,. h(u) has been excluded
from the weighting functions since there is no diffusion so-
lution to this problem. Since the boundary condition
fL(x,y)=48(x)8(y) at z=0 is even inx andy, the coeffi-
Note that boundary conditions can only be specified on th&€NtSCk vanish when either index is odd. The nonzero co-
part of thez=0 boundary wheré(x,y) = 1—x2—y2>0 be- efficients decrease rapidly with increasing indices. By nu-
cause of the two-way nature of the equation. Physically, oufterically solving Eqg.(31), we find thatceo converges
choice of a delta function condition on this boundary repre-lowards 1.19 and the lowest-order approximatiorf @alid
sents the generation of a runaway electron beam by the elef@" 2> 1/70,=1/36 thus becomes

tric field if E>1 [9]. As these electrons are accelerated, they _

experience scattering, that increases their perpendicular mo- F(X,y,2)~CoofoolX,Y) XP( —~ ¥002)

mentum. Fo®+y®>1, this leads to such large emission of — 119 exp— (x2+y?)—4z]. (32)
synchrotron radiation that the electrons are slowed down and

brought back toward the Iow-(_ane_rgy_boundatﬂgo, which  when considering smaller higher-order approximations are
they cross with an unknown distribution x-+y?>1. needed to describlaccurately. The coefficients in the next

~ Although Eq.(26) is formally a two-way diffusion equa- foyr approximations are calculated numerically and found to
tion in two dimensions, our rotationally symmetric boundary pe

condition makes the problem effectively one-dimensional,

and the theory from Sec. Il applies. A more fundamental Coo=Coo= —0.97,
difference between this problem and that considered in the
previous sections is that there is no diffusion solution of Eq.
(26) satisfying the boundary conditions since there is now no
solution of Eq.(4) that vanishes at infinity. The solution of
Eqg. (26) can, therefore, be represented purely by a linear
combination of eigenfunctions

f(x,y,2)—0, x2+y?+z°—ox,

f(x,y,00=f (x,y)=8x)8(y), x>+y?<l. (27

Cos4=Cyo= 0198C22: 2C04,
Cos= Ceo= — 0.0232¢ 4= C4o=3Cqg,

Cog= Cgo= 0.0019¢26= Cg2=4Cog, Ca4= 6Cog.
P?fy 9% . : .
—'2('+ —:': — Y (L=x2—y?)fy. Including these terms gives an accurate descriptiohenf-
X ay erywhere except at very smatl In this region,z—0, the

_ boundary condition27) says nothing about the distribution
In contrast to Sec. Ill, these functions can be expressed angjnction forx2+y2>1, but dictates that it should be strongly

Iytically [5], peaked arounc=y=0 for x>+y?<1. In fact, forr?=x?
oo +y?<1, our Eq.(26) reduces to an ordinary diffusion equa-
fkl(x,y):exp( - %(x%yz) Hi(XyEYH (Y vl tion, with the solution
(28 1 r?
f(r,z)=4—ex —4— . (33)
in terms of Hermite polynomialsl,, and the eigenvalues are mz z
ya=4(k+1+1)2 kl1=01,.... (29) Figures 5 and 6 show the truncated series solut@ at

z=0.015 andz=0.06, together with the asymptotic expres-
Alternatively, Eq.(26) can also be separated in cylindrical sions (32) and (33). For smallr the solution closely re-
coordinates. This leads to an eigenvalue problem equivaleisembles Eq(33), and for larger and largez it approaches
to the two-dimensional harmonic oscillator in quantum me-Eq. (32). The two-way diffusion nature of the equation is
chanics, which can be solved in terms of Laguerre polynoalso evident in Fig. 5: there is a population of backscattered
mials[10]. The distribution function expansiai®) becomes electrons in the region~1.2.
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1.2

1t

2.5 2.5

FIG. 5. Distribution functiorf vsr = (x?+y?)¥?atz=0.015:(a) FIG. 6. Same as Fig. 5 but fa=0.06.

one-way diffusion solution(33); (b) series solution(30) truncated . )
after terms withk+1=8; and(c) zeroth-order approximation, Eq. tematic way. The power of the method is demonstrated by

(32). examining two particular two-way diffusion problems: scat-
tering of electrons by stationary particles in a slab; and
damping of a relativistic electron beam by the combined ac-

V. SUMMARY tion of scattering and synchrotron radiation emission. The
expansion converges quickly in both these problems, even if
the mean-free path is not very short, and it, therefore, ap-
pears that the method should be of wide applicability.

It is known from the mathematical literature that two-way
diffusion equations have the property that boundary condi
tions can only be prescribed on “half” the boundaries, and
that “half” of the eigenfunctions form a complete but non-
orthogonal set on these “half” boundaries. In the present
paper, we have shown how these properties can be used to This work was jointly supported by EURATOM and the
construct approximate solutions to these equations in a sy&JK Department of Trade and Industry.
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